k-th order intelligences: Learning to learn to do.

Francisco J. Arjonilla (Paco)

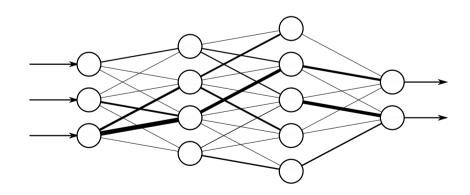
Yuichi Kobayashi

Graduate School of Science and Technology Shizuoka University

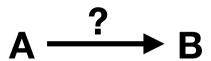
JSAI 2019

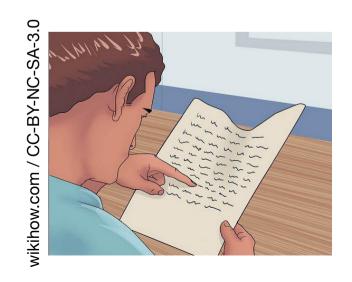
5th of June, 2019

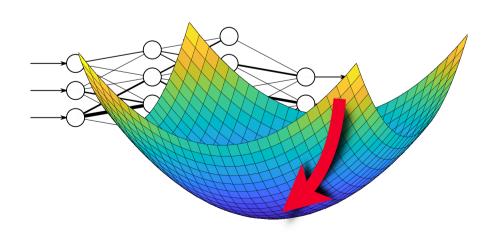
Learning and doing


- How can we make machines learn by themselves?
 - Agents that learn with no external intervention.
 - **A.G.I.**: The capability of adapting to any problem. Assumption: A.G.I. requires full self-modification.
- → Related to [Bateson, G. (1972) Steps to an ecology of mind].
 - Zero learning, Learning I, Learning II, etc.
 - Extend and explore deeper orders of learning.
- Objectives:
 - Propose ways to stop the infinite escalation of orders
 - Evaluate the proposal.

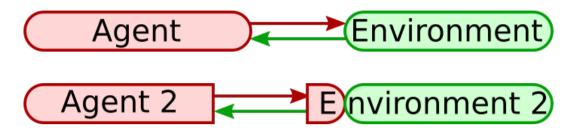
Computational processes (order 1)

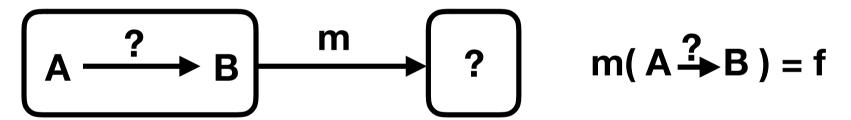

- Input and method are known.
- Outcome is not known.
- No changes to the intelligent agent. "Doing"
- Corresponds to Bateson's Zero Learning.




Resolution: Evaluate f(A).

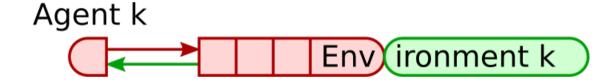
Learning processes (order 2)

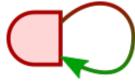

- Input and outcome are known.
- Method is not known.
- No changes to the environment: partial self-modification. "Learning to do"
- Corresponds to Bateson's Learning I.



Resolution of learning processes

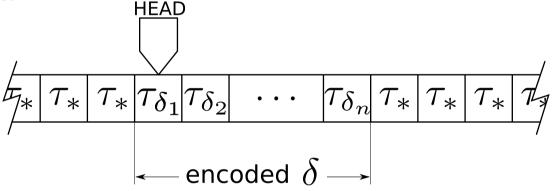
Consider new agent-environment system:


Metacomputational processes.


- Meta-learning process: Learning in agent 2.
 - Bateson's Learning II.
 - e.g. Learning to read.
 - e.g. Research on Al.

Meta-learning (order k)

- Apply induction:
 - First order interacts with the environment.
 - Following orders discard parts of the agent into the environment.
 - Learning to learn to ... to do.


- There will always be a meta-system of a system (a smaller agent).
- Unless we consider a self-referential meta-system.
- Stops the infinite escalation of orders.

Self-referential Turing Machine

- Consider a Universal Turing Machine.
- ightharpoonup With its action table δ stored in its own tape.
- The action table is variant.

$$\delta_{t+1} = \delta_t(\delta_t)$$

- The action table is a function of itself.
 - Godel Incompleteness Theorems.
- Can the Turing Machine arrive at a specific action table?
 - P vs NP problem. Undecided. No AGI?

Summary

- Learning processes output the methods used in computational processes, i.e. algorithms.
- Learning processes are meta-computational processes.
- By induction, we arrive at infinite orders of meta-processes.
- Unless we consider self-referential systems.
 e.g. Self-referential Universal Turing Machine.
- Artificial Intelligence is limited by its meta-models.

Thank you for your attention. ご清聴ありがとうございました

References

- Unruh, A., & Rosenbloom, P. S. (1989). Abstraction in Problem Solving and Learning. In Proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI) (pp. 681–687).
- → Bateson, G. (1972). Steps to an Ecology of Mind.
- Turing, A. M. (1939). Systems of Logic Based on Ordinals. In Proceedings of the London Mathematical Society (pp. 161–228).
- → Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte Für Mathematik Und Physik, 38(1), 173–198.
- Naik, D. K., & Mammone, R. J. (1992). Meta-neural networks that learn by learning. In IJCNN International Joint Conference on Neural Networks (Vol. 1, pp. 437–442).
- Schmidhuber, J. (2005). Gödel Machines: Self-Referential Universal Problem Solvers Making Provably Optimal Self-Improvements. In Artificial General Intelligence (Vol. 5).